

Smart contract
security audit

RAGE - PASS

Table of Contents

1.0 Introduction​ 3
1.1 Project engagement​ 3
1.2 Disclaimer​ 3

2.0 Coverage​ 4
2.1 Target Code and Revision​ 4
2.2 Attacks made to the contract​ 5

3.0 Security Issues​ 7
3.1 High severity issues [3]​ 7
3.2 Medium severity issues [7]​ 9
3.3 Low severity issues [5]​ 12
3.4 Informational Findings [0]​ 13

4.0 Testing coverage - python​ 14
5.0 Annexes​ 31
6.0 Summary of the audit [PASS ✅]​ 61

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 2 | Page

1.0 Introduction

1.1 Project engagement

During September of 2025, Rage team engaged CTDSec to audit smart contracts that they created. The

engagement was technical in nature and focused on identifying security flaws in the design and

implementation of the contracts. Rage provided CTDSec with access to their code repository and

whitepaper.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that Rage team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 3 | Page

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the Rage contracts followed by issue

reporting, along with mitigation and remediation instructions outlined in this report. The following

code files are considered in-scope for the review:

Source file:

Rage.sol – 0x38D5A28479Ef574C6069e9D49dF5D8dc8F668718

RageOracle.sol - 0xfc6C54f58A33a22D495EA8152aeB54F6D2bA1b45

RageSwapper.sol - 0x23812Ae437929C266224DD119c19776BF9C0be25

RageChaosEngine.sol - 0x70E5EB656FCcAB265f7a7Db199Be7Da069783932

RageOptionNft.sol - 0xF340F570a50B9A6E352743830EFA77b8BEdb64db

RageBuyingProtocol.sol - 0x4Ff19b27B6d610066Bd00FBdA6b882c3F9c5871E

Fixed Commit - 2450258fd0f799503d23c2963312458556788e91

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 4 | Page

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

№ Issue description.

1 Compiler warnings.

2 Race conditions and Reentrancy. Cross-function race conditions.

3 Possible delays in data delivery.

4 Oracle calls.

5 Front running.

6 Timestamp dependence.

7 Integer Overflow and Underflow.

8 DoS with Revert.

9 DoS with block gas limit.

10 Methods execution permissions.

11 Economy model. If application logic is based on an incorrect economic model,
the application would not function correctly and participants would incur
financial losses. This type of issue is most often found in bonus rewards
systems, Staking and Farming contracts, Vault and Vesting contracts, etc.

12 The impact of the exchange rate on the logic.

13 Private user data leaks.

14 Malicious Event log.

15 Scoping and Declarations.

16 Uninitialized storage pointers.

17 Arithmetic accuracy.

18 Design Logic.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 5 | Page

19 Cross-function race conditions.

20 Safe Zeppelin module.

21 Fallback function security.

22 Overpowered functions / Owner privileges

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 6 | Page

3.0 Security Issues

3.1 High severity issues [3]

1. Centralized and misconfigured ownership enables unilateral control and unlimited mint [Fixed ✅]

Contract: Rage.sol

Function: transferOwnership, mint

Issue: transferOwnership is callable only by a hardcoded EOA (not by owner), allowing that address to

reassign owner at any time. The owner can then call mint to create unlimited tokens. This combination

enables catastrophic dilution and market manipulation if the hardcoded EOA or owner is compromised

or malicious.

Recommendation: Make transferOwnership owner-only, remove the hardcoded caller, guard against

zero address, and emit (oldOwner,newOwner). Add a capped or governance-/timelock-gated mint policy

with rate limits or remove minting entirely if supply should be fixed.

Fix: Rage.mint for operational minting is gone; replaced with Rage.requestSupply(percent) gated to the

RCE (“owner”) with:

Per-request cap: MAX_SUPPLY_PERCENT = 10 (10% of total supply per request)

Rate limit: SUPPLY_DELAY = 1 days

Immediate mint: tokens are minted to RCE immediately on request (no execution queue)

Additional improvements: Add queued timelock with cancel

2. Oracle helpers revert when any asset input/balance is zero (functional DoS) [Acknowledge ✅]

Contract: RageOracle.sol

Function: calculateIncomingAssetsValue, calculateActiveAssetsFromValue (primary), Indirectly:

getIncomingAssetsValue, getActiveAssetsFromValue

Issue: The helpers require multiple asset amounts to be strictly > 0 (for example noCircleIn,

noActivePcircleAmount). Realistic states often have one or more assets at zero, causing unnecessary

reverts and blocking mint/redeem flows that rely on these calculations.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 7 | Page

Recommendation: Allow zero amounts and compute values conditionally. Remove strict non-zero

requires and treat missing components as 0 in the aggregation.

3. Claim payout can under-deliver vs computed claim without failing [PASS ✅]

Contract: RageBuyingProtocolBeta.sol, RageOracle/RageCalculation (used for sizing)

Function: ProcessClaim() (uses getPRageRequiredForRage, getPcircleRequiredForCircle,

getPohmRequiredForOhm -> debondAssets)

Issue: processClaim computes the exact pToken needed from oracle math, then debonds and transfers

whatever actually came back. It only checks RageDebonded > 0 and that balances increased, but does

not assert debonded ≥ overview.claim{Asset}. If any rounding/fee/skew makes debond return less than

the intended claim (even by more than a couple wei), the function still marks the claim as completed and

burns the user RAGE for the full amount user receives less than owed with no recourse.

Recommendation: After debond, require RageDebonded ≥ overview.claimRage (and same for others), or

recompute residual and keep claim active for the shortfall or alternatively, over-provision pToken input

using conservative rounding-up to guarantee ≥ target

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 8 | Page

3.2 Medium severity issues [7]

1. Debond assumes single-asset output - residual tokens can be stranded and later admin-swept [N/A

✅]

Contract: RageSwapper.sol

Function: executeDebond, performDebond, debondAssets, convertPRageToRage, convertPCircleToCircle,

convertPOhmToOhm

Issue: After pod.debond, the swapper measures and forwards only one tokenOut. If the pod returns

additional tokens (fees/rewards), they remain in the contract and can be withdrawn by admin via

withdrawToken, causing user value leakage.

Recommendation: Constrain pods to single-asset redemption by interface/version or track token

balance deltas across an allowlist and forward all increased balances to the user within the same tx.

2. Missing comprehensive price protection and deadlines [Fixed ✅]

Contract: RageSwapper.sol

Function: swapEthForUsdc (uses slippage=0), processUsdcToCircle (USDC↔WETH leg slippage=0),

processCircleToUsdc (WETH↔USDC leg slippage=0), and all swap entry points relying on executeSwap

(for example performSwap, swapRageForUsdc, swapUsdcForRage, swapOhmForUsdc, swapUsdcForOhm,

swapRageForUsdc, swapUsdcForRage, swapUsdcToAssets, swapAssetsToUsdc) none enforce a deadline.

Issue: Several legs run with slippage=0, and no function enforces a per-swap deadline. Transactions can

execute at highly unfavorable prices under MEV/sandwich attacks or delayed inclusion.

Recommendation: Require non-zero, reasonable slippage on every leg and enforce a per-swap deadline

(like block.timestamp + N). Consider TWAP/oracle checks for max price impact on large trades.

Fix: Implemented deadline parameters across all functions to enhance transaction control and reliability.

All token swaps now include slippage protection, with the exception of the WETH-USDC pool. The

WETH-USDC pair, which is also supported without slippage on the Rage Chaos Engine, benefits from

exceptionally high liquidity, mitigating the need for additional slippage settings.

3. ETH withdrawals can brick due to .transfer gas stipend [Fixed ✅]

Contract: RageSwapper.sol, RageChaosEngine.sol, RageBuyingProtocolBeta.sol

Function: withdrawEth, RageChaosEngine.withdrawEth, RageBuyingProtocolBeta.withdrawEth

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 9 | Page

Issue: .transfer forwards only 2300 gas, if the multisig/receiver is a smart contract that needs more gas in

receive/fallback, the withdrawal reverts, potentially locking ETH.

Recommendation: Use low-level .call{value: amount}("") with success check, or a safe transfer helper.

Consider a configurable gas limit if needed.

Fix: switched to call{value:…}("") with success check

4. Protocol entry points have no swap deadlines and rely on external swapper legs that may use zero

slippage [Fixed ✅]

Contract: RageBuyingProtocolBeta.sol

Function: investEthProcess (via swapEthForUsdc), investProcess (via swapUsdcToAssets), refund (via

swapAssetsToUsdc)

Issue: RBP routes trades through RageSwapper, which executes certain legs with slippage=0 and has no

deadlines. Calls from these protocol entry points inherit that behavior, allowing transactions to execute

at highly unfavorable prices under MEV/sandwich or delayed inclusion, harming users and treasury

accounting.

Recommendation: Enforce per-call deadlines and non-zero, bounded slippage at the protocol layer

before calling the swapper. Optionally add TWAP bounds from RageOracle for max price impact on large

orders. Consider extending the swapper interface to require a deadline and reject slippage==0.

Fix: The swapper now supports deadlines

5. RageOption NFT can be burned unilaterally by the protocol (centralized control over user NFTs)

[Fixed ✅]

Contract: RageOptionNftBeta.sol

Function: burn

Issue: burn(uint256 tokenId) is callable by the Rage Buying Protocol regardless of NFT ownership or

approval. While intended for option lifecycle, this allows the protocol to burn any user NFT at will, which

is a strong trust/centralization assumption and could be abused or triggered by a compromised RBP.

Recommendation: Constrain burns to lifecycle-verified paths only. Options:

Require the caller to be the RBP and the option to be in a burnable status (checked via RBP or RCE), or

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 10 | Page

Implement a permit/approval model where the user (NFT owner) authorizes protocol burn for a specific

tokenId, or

Mint NFTs as soulbound to the protocol and expose a user-initiated redeem that the protocol triggers via

pull (safer but UX tradeoffs).

Fix: Now requires RBP to be the current owner before burning additionally, we recommend to

implement owner-signed burn (permit) or require owner-initiated transfer to RBP for burn.

6. Automator can be set to the zero address, bricking privileged ops and withdrawals [Fixed ✅]

Contract: RageChaosEngine.sol

Function: setAutomator

Issue: setAutomator(address) lacks a nonzero check. Setting AUTOMATOR = address(0) makes

withdrawEth, withdrawToken, and setConfigs (all AUTOMATOR-gated) unusable, creating a liveness/ops

DoS on critical treasury operations.

Recommendation: Add require(automator != address(0), "invalidAutomator"). Consider a two-step

change (propose/accept) or owner co-sign to reduce misconfiguration risk. Log previous and new

automator.

Fix: Added explicit zero-address (and owner) rejection.

7. Initialization accepts zero addresses for core dependencies (swapper / RBP), risking permanent

liveness failures [Fixed ✅]

Contract: RageChaosEngine.sol

Function: initialize

Issue: initialize(address rageSwapper, address rageBuyingProtocol) does not validate inputs. A one-time

call with address(0) for either parameter will set unusable dependencies (for example swaps/buys in

rageCrush via RAGE_SWAPPER, or mintRage gating via RAGE_BUYING_PROTOCOL) and can permanently

brick core flows since initialize is single-use.

Recommendation: Validate nonzero and interface compliance (like code size > 0) for both addresses, add

an initialized guard (present) plus explicit revert reasons for bad params, consider allowing an

owner-governed, 2-of-2 update path if a dependency must be rotated post-init.

Fix: Now require(rageSwapper != address(0)) and require(rageBuyingProtocol != address(0)) (with clear

errors).

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 11 | Page

3.3 Low severity issues [5]

1. TWAP robustness & interval misuse risks (precision/rounding) [Fixed ✅]

Contract: RageOracle.sol

Function: getTwapPrice (core) callers: getWethTwapUsdcPrice, getRageTwapUsdcPrice,

getCircleTwapUsdcPrice, getOhmTwapUsdcPrice, getRageTwapUsdcPrice

Issue: Custom averaging and Q96 math without min/max interval bounds or standard rounding patterns.

Very small/large intervals can be manipulable or revert if outside observation capacity so rounding may

deviate from Uniswap reference.

Recommendation: Adopt Uniswap’s OracleLibrary.consult-style approach, enforce sensible min/max

intervals, and add sanity checks on outputs.

2. Infinite approvals to pods increase blast radius on pod compromise [Acknowledge ✅]

Contract: RageSwapper.sol

Function: constructor (approval setup)

Issue: Constructor grants unlimited allowances to pod contracts for underlying and pTokens. If a pod is

upgradable/compromised, it could pull approved balances present in the swapper.

Recommendation: Prefer per-call allowances where feasible or otherwise minimize idle balances,

document trust assumptions, and monitor pod governance/upgrades.

3. Misreported field in processClaimOverview (configClaimFee returns delay) [Fixed ✅]

Contract: RageBuyingProtocolBeta.sol

Function: processClaimOverview

Issue: The struct field configClaimFee is assigned existingClaim.configClaimDelay instead of the fee. This

is a correctness/UX bug that can mislead frontends and users about the fee configuration.

Recommendation: Return the correct value:

configClaimFee: existingClaim.configClaimFee

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 12 | Page

and ensure the claim struct stores both fee and delay distinctly (it already does). Add tests to assert field

wiring.

4. Strict pending-balance checks can cause avoidable view-function reverts (liveness/UX)

[Acknowledge ✅]

Contract: RageBuyingProtocolBeta.sol

Function: getPendingAssets (and any view that depends on it, for example investOverview)

Issue: getPendingAssets requires token balances in the contract to be ≥ recorded pending amounts and

reverts otherwise. Temporary discrepancies (rounding, transfers in flight, or harmless dust movements)

can cause read-path reverts and UI failures without protecting funds.

Recommendation: For view helpers, avoid hard require checks; instead, cap by min(onchainBalance,

pendingRecorded) or return both values for off-chain reconciliation. Keep strict checks on state-changing

paths where necessary.

5. Unbounded mint function is a critical tokenomics risk [Fixed ✅]

Contract: Rage.sol

Function: mint

Issue: mint(address,uint256) has no cap, schedule, or timelock. Even with correct access control, a

compromised owner can mint arbitrary supply and dump into liquidity, destroying holders value.

Recommendation: Introduce ERC20Capped or enforce mint limits via multisig + timelock + max inflation

per period. If minting is not essential, remove it.

3.4 Informational Findings [0]

No informational findings were found.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 13 | Page

4.0 Testing coverage - python

During the testing phase, custom use cases were written to cover all the logic of contracts in python

language. *Check “5 Annexes” to see the testing code.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 14 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 15 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 16 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 17 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 18 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 19 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 20 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 21 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 22 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 23 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 24 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 25 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 26 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 27 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 28 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 29 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 30 | Page

5.0 Annexes

Testing code:

Buy proto:

from brownie import (

 reverts,

)

from scripts.helpful_scripts import (

 ZERO_ADDRESS,

 DAY_TIMESTAMP,

 get_account,

)

from scripts.deploy import (

 deploy_weth,

 deploy_usdc,

 deploy_usdc_weth_pool,

 deploy_usdc_rage_pool,

 deploy_uniswap_v3_factory,

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 31 | Page

 deploy_position_manager,

 deploy_rage,

 deploy_swapper,

 deploy_rage_oracle,

 deploy_rage_buying_proto,

 deploy_rage_nft,

 deploy_chaos_engine,

)

def test_withdraw(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 32 | Page

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 oracle = deploy_rage_oracle(owner, rage.address, pool_rage.address)

 nft = deploy_rage_nft(owner, chaos_engine.address)

 buy_proto = deploy_rage_buying_proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

 with reverts("unauthorized"):

 buy_proto.withdrawEth({"from": other})

 buy_proto.withdrawEth({"from": "0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("unauthorized"):

 buy_proto.withdrawToken(usdc.address, 1e18, {"from": other})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 33 | Page

 with reverts("invAmo"):

 buy_proto.withdrawToken(usdc.address, 0, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("insBal"):

 buy_proto.withdrawToken(usdc.address, 1e18, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 usdc.mint(buy_proto.address, 1e18)

 tx = buy_proto.withdrawToken(usdc.address, 1e18, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 assert tx.events['Transfer'][0]['from'] == buy_proto.address

 assert tx.events['Transfer'][0]['to'] ==

"0x815E7DE6BF3Fa334581De2b398BdDEBF3B71AE99"

 assert tx.events['Transfer'][0]['value'] == 1e18

def test_set_status(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 34 | Page

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 oracle = deploy_rage_oracle(owner, rage.address, pool_rage.address)

 nft = deploy_rage_nft(owner, chaos_engine.address)

 buy_proto = deploy_rage_buying_proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

 with reverts("unauthorized"):

 buy_proto.setStatus(0, {"from": other})

 with reverts("invalidStatus"):

 buy_proto.setStatus(2, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 35 | Page

 buy_proto.setStatus(1, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

Rage:

from brownie import (

 reverts,

)

from scripts.helpful_scripts import (

 get_account,

)

from scripts.deploy import (

 deploy_rage,

)

def test_mint(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 rage = deploy_rage(owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 36 | Page

 with reverts("unauthorized"):

 rage.mint(other, 10e18, {"from": other})

 assert rage.balanceOf(other) == 0

 rage.mint(other, 10e18, {"from": owner})

 assert rage.balanceOf(other) == 10e18

def test_burn(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 rage = deploy_rage(owner)

 rage.mint(other, 10e18, {"from": owner})

 assert rage.balanceOf(other) == 10e18

 rage.burn(1e18, {"from": other})

 assert rage.balanceOf(other) == 9e18

def test_transfer_ownership(only_local):

 # Arrange

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 37 | Page

 owner = get_account(0)

 other = get_account(1)

 rage = deploy_rage(owner)

 with reverts("unauthorized"):

 rage.transferOwnership(other, {"from": other})

 assert rage.owner() == owner

 rage.transferOwnership(other, {"from":

"0xC2bBE86b900c072a4031247547c337aFf344AD90"})

 assert rage.owner() == other

Rage Chaos:

from brownie import (

 reverts,

)

from scripts.helpful_scripts import (

 ZERO_ADDRESS,

 DAY_TIMESTAMP,

 get_account,

)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 38 | Page

from scripts.deploy import (

 deploy_weth,

 deploy_usdc,

 deploy_usdc_weth_pool,

 deploy_usdc_rage_pool,

 deploy_uniswap_v3_factory,

 deploy_position_manager,

 deploy_rage,

 deploy_swapper,

 deploy_rage_oracle,

 deploy_rage_buying_proto,

 deploy_rage_nft,

 deploy_chaos_engine,

)

def test_initialize(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 owner2 = get_account(8)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 39 | Page

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 oracle = deploy_rage_oracle(owner, rage.address, pool_rage.address)

 nft = deploy_rage_nft(owner, chaos_engine.address)

 buy_proto = deploy_rage_buying_proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

 with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 40 | Page

 chaos_engine.initialize(swapper.address, buy_proto.address, {"from":

other})

 chaos_engine.initialize(swapper.address, buy_proto.address, {"from": owner2})

 with reverts("alreadyInitialized"):

 chaos_engine.initialize(swapper.address, buy_proto.address, {"from":

owner2})

def test_withdraw(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 41 | Page

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 with reverts("unauthorized"):

 chaos_engine.withdrawEth({"from": other})

 chaos_engine.withdrawEth({"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("unauthorized"):

 chaos_engine.withdrawToken(usdc.address, {"from": other})

 with reverts("noTokenBalance"):

 chaos_engine.withdrawToken(usdc.address, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 usdc.mint(chaos_engine.address, 1e18)

 tx = chaos_engine.withdrawToken(usdc.address, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 assert tx.events['Transfer'][0]['from'] == chaos_engine.address

 assert tx.events['Transfer'][0]['to'] ==

"0x507fbdE39ba40DA4Fc79426AD5E3C64944fE43d4"

 assert tx.events['Transfer'][0]['value'] == 1e18

def test_transfer_ownership(only_local):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 42 | Page

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 43 | Page

 oracle = deploy_rage_oracle(owner, rage.address, pool_rage.address)

 nft = deploy_rage_nft(owner, chaos_engine.address)

 buy_proto = deploy_rage_buying_proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

 with reverts("unauthorized"):

 chaos_engine.transferOwnership(extra, {"from": other})

 with reverts("invalidOwnerAddress"):

 chaos_engine.transferOwnership(ZERO_ADDRESS, {"from": owner2})

 chaos_engine.initialize(swapper.address, buy_proto.address, {"from": owner2})

 with reverts("ownerCannotBeRbp"):

 chaos_engine.transferOwnership(buy_proto.address, {"from": owner2})

 with reverts("ownerCannotBeAutomator"):

chaos_engine.transferOwnership("0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020",

{"from": owner2})

 with reverts("ownersMustBeDifferent"):

 chaos_engine.transferOwnership(owner3, {"from": owner2})

 with reverts("ownersMustBeDifferent"):

 chaos_engine.transferOwnership(owner2, {"from": owner3})

 tx = chaos_engine.transferOwnership(other, {"from": owner2})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 44 | Page

 assert tx.events['OwnershipTransferred'][0]['oldOwner'] == owner2

 assert tx.events['OwnershipTransferred'][0]['newOwner'] == other

def test_set_buying_proto(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 45 | Page

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 oracle = deploy_rage_oracle(owner, rage.address, pool_rage.address)

 nft = deploy_rage_nft(owner, chaos_engine.address)

 buy_proto = deploy_rage_buying_proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

 with reverts("unauthorized"):

 chaos_engine.setRageBuyingProtocol(buy_proto.address, {"from": other})

 with reverts("invalidRbpAddress"):

 chaos_engine.setRageBuyingProtocol(ZERO_ADDRESS, {"from": owner2})

 with reverts("ownerCannotBeRbp"):

 chaos_engine.setRageBuyingProtocol(owner3, {"from": owner2})

 tx = chaos_engine.setRageBuyingProtocol(buy_proto.address, {"from": owner2})

 assert tx.events['RageBuyingProtocolProposed'][0]['proposer'] == owner2

 assert tx.events['RageBuyingProtocolProposed'][0]['pendingRbp'] ==

buy_proto.address

def test_set_automator(only_local):

 # Arrange

 owner = get_account(0)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 46 | Page

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 with reverts("unauthorized"):

 chaos_engine.setAutomator(other, {"from": other})

 with reverts("invalidAutomatorAddress"):

 chaos_engine.setAutomator(owner2, {"from": owner2})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 47 | Page

 tx = chaos_engine.setAutomator(other, {"from": owner2})

 assert tx.events['AutomatorSet'][0]['automator'] == other

def test_set_configs(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 48 | Page

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 with reverts("unauthorized"):

 chaos_engine.setConfigs(True, 0, DAY_TIMESTAMP, 1000, {"from": other})

 with reverts("invalidRageCrushMode"):

 chaos_engine.setConfigs(True, 3, DAY_TIMESTAMP, 1000, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("invalidRageInterval"):

 chaos_engine.setConfigs(True, 0, 0, 1000, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("invalidLiquiditySlippage"):

 chaos_engine.setConfigs(True, 0, DAY_TIMESTAMP, 3000, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 tx = chaos_engine.setConfigs(True, 0, DAY_TIMESTAMP, 2500, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 assert tx.events['ConfigChanged'][0]['crushPublic'] == True

 assert tx.events['ConfigChanged'][0]['crushMode'] == 0

 assert tx.events['ConfigChanged'][0]['crushInterval'] == DAY_TIMESTAMP

 assert tx.events['ConfigChanged'][0]['slippage'] == 2500

Rage Option NFT:

from brownie import (

 reverts,

)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 49 | Page

from scripts.helpful_scripts import (

 ZERO_ADDRESS,

 get_account,

)

from scripts.deploy import (

 deploy_weth,

 deploy_usdc,

 deploy_usdc_weth_pool,

 deploy_uniswap_v3_factory,

 deploy_position_manager,

 deploy_rage,

 deploy_chaos_engine,

 deploy_rage_nft,

)

def test_base_uri(only_local):

 # Arrange

 owner = get_account(0)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 50 | Page

 other = get_account(1)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 with reverts("invalidRceAddress"):

 deploy_rage_nft(owner, ZERO_ADDRESS)

 rage_nft = deploy_rage_nft(owner, chaos_engine.address)

 with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 51 | Page

 rage_nft.setBaseURI("some_url", {"from": other})

 tx = rage_nft.setBaseURI("some_url", {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 assert tx.events['BaseUriUpdated'][0]['newBaseURI'] == "some_url"

def test_mint(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 52 | Page

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 rage_nft = deploy_rage_nft(owner, chaos_engine.address)

 with reverts("unauthorized"):

 rage_nft.mint(other, 1, {"from": other})

 with reverts("invalidRecipient"):

 rage_nft.mint(ZERO_ADDRESS, 1, {"from": ZERO_ADDRESS})

 tx = rage_nft.mint(other, 1, {"from": ZERO_ADDRESS})

 assert tx.events['Transfer'][0]['from'] == ZERO_ADDRESS

 assert tx.events['Transfer'][0]['to'] == other

 assert tx.events['Transfer'][0]['tokenId'] == 1

 with reverts("ERC721: token already minted"):

 rage_nft.mint(extra, 1, {"from": ZERO_ADDRESS})

 tx = rage_nft.mint(extra, 2, {"from": ZERO_ADDRESS})

 assert tx.events['Transfer'][0]['from'] == ZERO_ADDRESS

 assert tx.events['Transfer'][0]['to'] == extra

 assert tx.events['Transfer'][0]['tokenId'] == 2

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 53 | Page

def test_burn(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 rage_nft = deploy_rage_nft(owner, chaos_engine.address)

 with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 54 | Page

 rage_nft.burn(1, {"from": other})

 with reverts("tokenNotFound"):

 rage_nft.burn(2, {"from": ZERO_ADDRESS})

 rage_nft.mint(other, 1, {"from": ZERO_ADDRESS})

 tx = rage_nft.burn(1, {"from": ZERO_ADDRESS})

 assert tx.events['Transfer'][0]['from'] == other

 assert tx.events['Transfer'][0]['to'] == ZERO_ADDRESS

 assert tx.events['Transfer'][0]['tokenId'] == 1

Rage Swapper:

from brownie import (

 reverts,

)

from scripts.helpful_scripts import (

 ZERO_ADDRESS,

 DAY_TIMESTAMP,

 get_account,

 get_timestamp,

 get_chain_number,

 increase_timestamp

)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 55 | Page

from scripts.deploy import (

 deploy_weth,

 deploy_usdc,

 deploy_usdc_weth_pool,

 deploy_usdc_rage_pool,

 deploy_uniswap_v3_factory,

 deploy_position_manager,

 deploy_rage,

 deploy_chaos_engine,

 deploy_swapper,

)

def test_withdraw(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 56 | Page

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 with reverts("unauthorized"):

 swapper.withdrawEth({"from": other})

 swapper.withdrawEth({"from": "0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 57 | Page

 swapper.withdrawToken(usdc.address, {"from": other})

 with reverts("noTokenBalance"):

 swapper.withdrawToken(usdc.address, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 usdc.mint(swapper.address, 1e18)

 tx = swapper.withdrawToken(usdc.address, {"from":

"0xCBe5a4103d4C7Ed5D73d9942101473C1Bc0A8020"})

 assert tx.events['Transfer'][0]['from'] == swapper.address

 assert tx.events['Transfer'][0]['to'] ==

"0x507fbdE39ba40DA4Fc79426AD5E3C64944fE43d4"

 assert tx.events['Transfer'][0]['value'] == 1e18

def test_swap(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 owner2 = get_account(8)

 owner3 = get_account(9)

 weth = deploy_weth(owner)

 usdc = deploy_usdc(owner)

 rage = deploy_rage(owner)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 58 | Page

 pool = deploy_usdc_weth_pool(usdc.address, weth.address, owner)

 pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

 factory = deploy_uniswap_v3_factory(owner)

 # Deploy PositionManager

 position_manager = deploy_position_manager(owner)

 position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1e18)

 chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

 swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

 with reverts("noEthSent"):

 swapper.swapEthForUsdc({"from": other})

 usdc.mint(swapper.address, 1000e9)

 weth.approve(pool.address, 10e18, {"from": swapper.address})

 tx = swapper.swapEthForUsdc({"from": other, "value": 1e18})

 assert tx.events['Deposit'][0]['dst'] == swapper.address

 assert tx.events['Deposit'][0]['wad'] == 1e18

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 59 | Page

 tx = swapper.swapEthForUsdc({"from": extra, "value": 0.5e18})

 assert tx.events['Deposit'][0]['dst'] == swapper.address

 assert tx.events['Deposit'][0]['wad'] == 0.5e18

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 60 | Page

6.0 Summary of the audit [PASS ✅]

Several high‐medium severity gaps can disrupt user experience or disable features. With the

recommended mitigations, the contract can achieve a robust security posture fit for production DeFi

deployment. The audit result is failed until further review by the development team.

UPDATE: Following the development team's review, all critical vulnerabilities have been

mitigated/reviewed, and the audit result is satisfactory.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 61 | Page

Vulnerability Level Total Pending Not
Apply

Acknowledged Resolved

 High
3 1 2

 Medium

7 1 6

 Low
5 2 3

 Informational

0

	1.0 Introduction
	1.1 Project engagement
	1.2 Disclaimer

	
	2.0 Coverage
	2.1 Target Code and Revision
	2.2 Attacks made to the contract

	3.0 Security Issues
	3.1 High severity issues [3]
	
	3.2 Medium severity issues [7]
	3.3 Low severity issues [5]
	
	3.4 Informational Findings [0]

	4.0 Testing coverage - python
	5.0 Annexes
	
	
	6.0 Summary of the audit [PASS ✅]

