CTDSEC

YOU ARE PROTECTED

TERMS

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to
its copyright a CTDSec, including photocopying and all other copying, any transfer or transmission using any
network or other means of communication, in any form or by any means such as any information storage,
transmission or retrieval system, without prior written permission.

Smart contract
security audit

RAGE - PASS

Table of Contents

1.0 Introduction
1.1 Project engagement
1.2 Disclaimer
2.0 Coverage
2.1 Target Code and Revision
2.2 Attacks made to the contract
3.0 Security Issues
3.1 High severity issues [3]
3.2 Medium severity issues [7]
3.3 Low severity issues [5]
3.4 Informational Findings [0]
4.0 Testing coverage - python
5.0 Annexes
6.0 Summary of the audit [PASS ['/

Copyright © CTDSec - All rights reserved

O N N 00 B & W W W

O W R R R
R R b W N

2 | Page

1.0 Introduction
1.1 Project engagement

During September of 2025, Rage team engaged CTDSec to audit smart contracts that they created. The
engagement was technical in nature and focused on identifying security flaws in the design and
implementation of the contracts. Rage provided CTDSec with access to their code repository and

whitepaper.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that Rage team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

Copyright © CTDSec - All rights reserved 3 | Page

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the Rage contracts followed by issue
reporting, along with mitigation and remediation instructions outlined in this report. The following
code files are considered in-scope for the review:

Source file:

Rage.sol — 0x38D5A28479Ef574C6069e9D49dF5D8dc8F668718

RageOracle.sol - Oxfc6C54f58A33a22D495EA8152aeB54F6D2bA1b45

RageSwapper.sol - 0x23812Ae437929C266224DD119¢19776BF9C0Obe25

RageChaosEngine.sol - 0Ox70ES5EB656FCcAB265f7a7Db199Be7Da069783932

RageOptionNft.sol - 0xF340F570a50B9A6E352743830EFA77b8BEdb64db

RageBuyingProtocol.sol - 0x4Ff19b27B6d610066Bd00FBdA6b882¢c3F9c5871E

Fixed Commit - 2450258fd0f799503d23¢c2963312458556788e91

Copyright © CTDSec - All rights reserved 4 | Page

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

Ne Issue description.

1 Compiler warnings.

2 Race conditions and Reentrancy. Cross-function race conditions.
3 Possible delays in data delivery.

4 Oracle calls.

5 Front running.

6 Timestamp dependence.

7 Integer Overflow and Underflow.

8 DoS with Revert.

9 DoS with block gas limit.

10 Methods execution permissions.

11 Economy model. If application logic is based on an incorrect economic model,

the application would not function correctly and participants would incur
financial losses. This type of issue is most often found in bonus rewards
systems, Staking and Farming contracts, Vault and Vesting contracts, etc.

12 The impact of the exchange rate on the logic.
13 Private user data leaks.

14 Malicious Event log.

15 Scoping and Declarations.

16 Uninitialized storage pointers.

17 Arithmetic accuracy.

18 Design Logic.

Copyright © CTDSec - All rights reserved 5 | Page

19 Cross-function race conditions.

20 Safe Zeppelin module.
21 Fallback function security.
22 Overpowered functions / Owner privileges

Copyright © CTDSec - All rights reserved 6 | Page

3.0 Security Issues

3.1 High severity issues [3]

1. Centralized and misconfigured ownership enables unilateral control and unlimited mint [Fixed (/4]

Contract: Rage.sol
Function: transferOwnership, mint

Issue: transferOwnership is callable only by a hardcoded EOA (not by owner), allowing that address to
reassign owner at any time. The owner can then call mint to create unlimited tokens. This combination
enables catastrophic dilution and market manipulation if the hardcoded EOA or owner is compromised
or malicious.

Recommendation: Make transferOwnership owner-only, remove the hardcoded caller, guard against
zero address, and emit (oldOwner,newOwner). Add a capped or governance-/timelock-gated mint policy
with rate limits or remove minting entirely if supply should be fixed.

Fix: Rage.mint for operational minting is gone; replaced with Rage.requestSupply(percent) gated to the
RCE (“owner”) with:

Per-request cap: MAX_SUPPLY_PERCENT = 10 (10% of total supply per request)
Rate limit: SUPPLY_DELAY = 1 days
Immediate mint: tokens are minted to RCE immediately on request (no execution queue)

Additional improvements: Add queued timelock with cancel

2. Oracle helpers revert when any asset input/balance is zero (functional DoS) [Acknowledge]

Contract: RageOracle.sol

Function: calculatelncomingAssetsValue, calculateActiveAssetsFromValue (primary), Indirectly:
getincomingAssetsValue, getActiveAssetsFromValue

Issue: The helpers require multiple asset amounts to be strictly > 0 (for example noCircleln,
noActivePcircleAmount). Realistic states often have one or more assets at zero, causing unnecessary
reverts and blocking mint/redeem flows that rely on these calculations.

Copyright © CTDSec - All rights reserved 7 | Page

Recommendation: Allow zero amounts and compute values conditionally. Remove strict non-zero
requires and treat missing components as 0 in the aggregation.

laim t can under-deliver vs comput laim without failing [PA
Contract: RageBuyingProtocolBeta.sol, RageOracle/RageCalculation (used for sizing)

Function: ProcessClaim() (uses getPRageRequiredForRage, getPcircleRequiredForCircle,
getPohmRequiredForOhm -> debondAssets)

Issue: processClaim computes the exact pToken needed from oracle math, then debonds and transfers
whatever actually came back. It only checks RageDebonded > 0 and that balances increased, but does
not assert debonded = overview.claim{Asset}. If any rounding/fee/skew makes debond return less than
the intended claim (even by more than a couple wei), the function still marks the claim as completed and
burns the user RAGE for the full amount user receives less than owed with no recourse.

Recommendation: After debond, require RageDebonded = overview.claimRage (and same for others), or
recompute residual and keep claim active for the shortfall or alternatively, over-provision pToken input
using conservative rounding-up to guarantee = target

Copyright © CTDSec - All rights reserved 8 | Page

3.2 Medium severity issues [7]

1. Debond assumes single-asset output - residual tokens can be stranded and later admin-swept [N/A

V|

Contract: RageSwapper.sol

Function: executeDebond, performDebond, debondAssets, convertPRageToRage, convertPCircleToCircle,
convertPOhmToOhm

Issue: After pod.debond, the swapper measures and forwards only one tokenOut. If the pod returns
additional tokens (fees/rewards), they remain in the contract and can be withdrawn by admin via
withdrawToken, causing user value leakage.

Recommendation: Constrain pods to single-asset redemption by interface/version or track token
balance deltas across an allowlist and forward all increased balances to the user within the same tx.

2. Missing comprehensive price protection and deadlines [Fixed [74]

Contract: RageSwapper.sol

Function: swapEthForUsdc (uses slippage=0), processUsdcToCircle (USDC«»WETH leg slippage=0),
processCircleToUsdc (WETH<«>USDC leg slippage=0), and all swap entry points relying on executeSwap
(for example performSwap, swapRageForUsdc, swapUsdcForRage, swapOhmForUsdc, swapUsdcForOhm,
swapRageForUsdc, swapUsdcForRage, swapUsdcToAssets, swapAssetsToUsdc) none enforce a deadline.

Issue: Several legs run with slippage=0, and no function enforces a per-swap deadline. Transactions can
execute at highly unfavorable prices under MEV/sandwich attacks or delayed inclusion.

Recommendation: Require non-zero, reasonable slippage on every leg and enforce a per-swap deadline
(like block.timestamp + N). Consider TWAP/oracle checks for max price impact on large trades.

Fix: Implemented deadline parameters across all functions to enhance transaction control and reliability.
All token swaps now include slippage protection, with the exception of the WETH-USDC pool. The
WETH-USDC pair, which is also supported without slippage on the Rage Chaos Engine, benefits from
exceptionally high liquidity, mitigating the need for additional slippage settings.

3. ETH withdrawals can brick due to .transfer gas stipend [Fixed]

Contract: RageSwapper.sol, RageChaosEngine.sol, RageBuyingProtocolBeta.sol

Function: withdrawEth, RageChaosEngine.withdrawEth, RageBuyingProtocolBeta.withdrawEth

Copyright © CTDSec - All rights reserved 9 | Page

Issue: .transfer forwards only 2300 gas, if the multisig/receiver is a smart contract that needs more gas in
receive/fallback, the withdrawal reverts, potentially locking ETH.

Recommendation: Use low-level .call{value: amount}("") with success check, or a safe transfer helper.

Consider a configurable gas limit if needed.

Fix: switched to call{value:...}("") with success check

4. Protocol entr ints have no sw lin nd rely on external sw rl that m zer
slippage [Fixed

Contract: RageBuyingProtocolBeta.sol

Function: investEthProcess (via swapEthForUsdc), investProcess (via swapUsdcToAssets), refund (via
swapAssetsToUsdc)

Issue: RBP routes trades through RageSwapper, which executes certain legs with slippage=0 and has no
deadlines. Calls from these protocol entry points inherit that behavior, allowing transactions to execute
at highly unfavorable prices under MEV/sandwich or delayed inclusion, harming users and treasury
accounting.

Recommendation: Enforce per-call deadlines and non-zero, bounded slippage at the protocol layer
before calling the swapper. Optionally add TWAP bounds from RageOracle for max price impact on large
orders. Consider extending the swapper interface to require a deadline and reject slippage==0.

Fix: The swapper now supports deadlines

5. RageOption NFT can be burned unilaterally by the protocol (centralized control over user NFTs)

[Fixed |

Contract: RageOptionNftBeta.sol

Function: burn

Issue: burn(uint256 tokenld) is callable by the Rage Buying Protocol regardless of NFT ownership or
approval. While intended for option lifecycle, this allows the protocol to burn any user NFT at will, which
is a strong trust/centralization assumption and could be abused or triggered by a compromised RBP.

Recommendation: Constrain burns to lifecycle-verified paths only. Options:

Require the caller to be the RBP and the option to be in a burnable status (checked via RBP or RCE), or

Copyright © CTDSec - All rights reserved 10 | Page

Implement a permit/approval model where the user (NFT owner) authorizes protocol burn for a specific
tokenld, or

Mint NFTs as soulbound to the protocol and expose a user-initiated redeem that the protocol triggers via
pull (safer but UX tradeoffs).

Fix: Now requires RBP to be the current owner before burning additionally, we recommend to
implement owner-signed burn (permit) or require owner-initiated transfer to RBP for burn.

6. Automator can be set to the zero address, bricking privileged ops and withdrawals [Fixed
Contract: RageChaosEngine.sol
Function: setAutomator

Issue: setAutomator(address) lacks a nonzero check. Setting AUTOMATOR = address(0) makes
withdrawEth, withdrawToken, and setConfigs (all AUTOMATOR-gated) unusable, creating a liveness/ops
DoS on critical treasury operations.

Recommendation: Add require(automator != address(0), "invalidAutomator"). Consider a two-step
change (propose/accept) or owner co-sign to reduce misconfiguration risk. Log previous and new
automator.

Fix: Added explicit zero-address (and owner) rejection.

7. Initialization accepts zero addresses for core dependencies (swa

liveness failures [Fixed]

Contract: RageChaosEngine.sol

Function: initialize

Issue: initialize(address rageSwapper, address rageBuyingProtocol) does not validate inputs. A one-time
call with address(0) for either parameter will set unusable dependencies (for example swaps/buys in
rageCrush via RAGE_SWAPPER, or mintRage gating via RAGE_BUYING_PROTOCOL) and can permanently
brick core flows since initialize is single-use.

Recommendation: Validate nonzero and interface compliance (like code size > 0) for both addresses, add
an initialized guard (present) plus explicit revert reasons for bad params, consider allowing an
owner-governed, 2-of-2 update path if a dependency must be rotated post-init.

Fix: Now require(rageSwapper != address(0)) and require(rageBuyingProtocol != address(0)) (with clear
errors).

Copyright © CTDSec - All rights reserved 11 | Page

3.3 Low severity issues [5]

1. TWAP robustness & interval misuse risks (precision/rounding) [Fixed
Contract: RageOracle.sol

Function: getTwapPrice (core) callers: getWethTwapUsdcPrice, getRageTwapUsdcPrice,
getCircleTwapUsdcPrice, getOhmTwapUsdcPrice, getRageTwapUsdcPrice

Issue: Custom averaging and Q96 math without min/max interval bounds or standard rounding patterns.
Very small/large intervals can be manipulable or revert if outside observation capacity so rounding may
deviate from Uniswap reference.

Recommendation: Adopt Uniswap’s OracleLibrary.consult-style approach, enforce sensible min/max
intervals, and add sanity checks on outputs.

2. Infinite approvals to pods increase blast radius on pod compromise [Acknowledge]

Contract: RageSwapper.sol
Function: constructor (approval setup)

Issue: Constructor grants unlimited allowances to pod contracts for underlying and pTokens. If a pod is
upgradable/compromised, it could pull approved balances present in the swapper.

Recommendation: Prefer per-call allowances where feasible or otherwise minimize idle balances,
document trust assumptions, and monitor pod governance/upgrades.

3. Misreported field in processClaimOverview (configClaimFee returns delay) [Fixed
Contract: RageBuyingProtocolBeta.sol
Function: processClaimOverview

Issue: The struct field configClaimFee is assigned existingClaim.configClaimDelay instead of the fee. This
is a correctness/UX bug that can mislead frontends and users about the fee configuration.

Recommendation: Return the correct value:

existingClaim.configClaimFee

Copyright © CTDSec - All rights reserved 12 | Page

and ensure the claim struct stores both fee and delay distinctly (it already does). Add tests to assert field
wiring.

4, Strict pending-balan heck n voi le view-function reverts (liven X

[Acknowledge]

Contract: RageBuyingProtocolBeta.sol
Function: getPendingAssets (and any view that depends on it, for example investOverview)

Issue: getPendingAssets requires token balances in the contract to be 2 recorded pending amounts and
reverts otherwise. Temporary discrepancies (rounding, transfers in flight, or harmless dust movements)
can cause read-path reverts and Ul failures without protecting funds.

Recommendation: For view helpers, avoid hard require checks; instead, cap by min(onchainBalance,
pendingRecorded) or return both values for off-chain reconciliation. Keep strict checks on state-changing
paths where necessary.

n n mint function i ritical tokenomics risk [Fix
Contract: Rage.sol
Function: mint

Issue: mint(address,uint256) has no cap, schedule, or timelock. Even with correct access control, a
compromised owner can mint arbitrary supply and dump into liquidity, destroying holders value.

Recommendation: Introduce ERC20Capped or enforce mint limits via multisig + timelock + max inflation
per period. If minting is not essential, remove it.

3.4 Informational Findings [0]

No informational findings were found.

Copyright © CTDSec - All rights reserved 13 | Page

4.0 Testing coverage - python

During the testing phase, custom use cases were written to cover all the logic of contracts in python

language. *Check “5 Annexes” to see the testing code.

Copyright © CTDSec - All rights reserved 14 | Page

Limit:
ntirmed Bl

Gas limit:

Gas limit:

onf Lrmed

ont irmed

Limit:

cont 1L rmed

UniswapViFa

Transaction sent:
price: gwel Gas limit:
kMonfungiblePos it ionManager
t LonManager

tion sent:
Gas pri gwel Gas limit:
MockNonfungibl

5 Endg Lne.
RageChassEngine dep

Limit:
Tirmed

Limit:
ntLrmed

Limit:
r cont Llrmed

Limit:

Block:

cont Lrmed

L

jata. withdrawEth contirmed o

Copyright © CTDSec - All rights reserved

15 | Page

FANNING

ek 1 Gas Llimit
1t i

gael Gas Limit:
st lonParage romint

Copyright © CTDSec - All rights reserved 16 | Page

Monc
Bl

vel { Limi i
Beta.withdra wen confirmed

Gas Limi Mo
wWithdrawToken confirmed

3 | Gas Mo
LBeta.withdr contirmed

1 Gas limi
|Beta.withdra e nTirmed

tests/test_buy_proto. e5t_withdraw

Copyright © CTDSec - All rights reserved 17 | Page

test_set_status RUNNING

Gas Limit:
ontirmed Block:

Limit:

Gas

Aage ntirmed

Rage deployed at:

Limit:
r cont lrmed

c
deployed at:

CkMonTung LbLeP
kMonTung 1k LeP

Limit: on
iticnManager.mint confirmed Bl

Limit:
ont1lrmed

Gas limit:
ptionNftBeta I r oont lrmed
ptionNftBeta deplo

Hon
ontirmed Blo

Qe l Gas limit: Nonce:
Rageliy LngPro lBata. setStatus confirmed |

Copyright © CTDSec - All rights reserved 18 | Page

tion sent:
pri Qwel L Limit:
efuy LngP ro LBata t5tatus conflrmed

Limit:
t5tatus conflrmed

test_set_status
mint RUNMING
Gas limit:
ntfirmed Bl

tion sent:
pFLLC Qe l Gas limit:
Rage.mint contirmed |

Limit:
ch:

st_mint
st_burn RUNNING

Gas

ntirmed

tion sent:
pric g
tage. mint contirmed

pric Qe l
burn contirmed

st_transfer_ownership RUNNING

Gas limit: Monce:
ntirmed Bl {

Limit: Monce:
cont Lrmed

Limit:
B

itest_transter_ownership

Copyright © CTDSec - All rights reserved 19 | Page

Limit:
T Lrmed BL

Gas Limit:
or confilrmed

tion sent:

price: gwel Gas limit:
kMonTungiblePositionManager ructor confirmed B1
kNonfungibLepP t LonManage r

tien sent:
Gas pr
Mo-ckNonTungibl n Blo

Transaction sent:

RageChaosEnglne.
RageChaosEngine deployes

Limit:
nfirmed Bl

Limit:
tructor conflrmed
Ragedpt lonNftBeta deployed at:

Transaction sent:

gwel Limit:
Engine.initialize confirmed {

Copyright © CTDSec - All rights reserved 20 | Page

tests/test_rage_chaos itest_withdraw RUMNING

G Limit:
Bl

Limit:
ERCZ8MoCk i r cont lrmed
ERC28Mo

e 1 L Limi
r confirmed B

Nonce:

NN Tung Ll o Br structo ontirmed

MonTung LblePao

ction sent:
price:
Mon Tung Ll

Limit:
wWEth contilrmed

Limit:
Eth confirmed

gwel Limit:

ed at:

ngLne. withdr ten confirmed |

sent:
gwel
sEngine.withdra

Copyright © CTDSec - All rights reserved

21 | Page

« pyiitest_transfer ership RUNMING

Gas limit:
ont1rmed B

Limit:

Gas limit:
tri r oontirmed

Limit:
ntirmed Block

{ Limit: MonC
tionManager.mint contirmed

Nonoe:

Limit:
ont lrmed Block:

Limit:
ontLrmed Blo

Limdit:
roonfirmed i

r oont Llrmed

Limit: Monce:
wiership confirmed (

Copyright © CTDSec - All rights reserved 22 | Page

Limit:
benership contlrmed

on sent:
Jwel L Nonoe:
sEngine. initial

on sent:

{ Nonoe:
ngine. transt ership confirmed |
sent:

5 limit: Monce
wnership contirmed

Limit: Nonoe:
ership confirmed |

Jwel L Limit: Nonoe:
ngine. trans ferbwnership confirmed |

Jwel L Limit: Non
sEngine. transfer ership contlrmed B

itest_transfer_ownership

Copyright © CTDSec - All rights reserved 23 | Page

Gas Limit:
onfirmed EBlock:

Limit:
ont Lrmed

Gas limit:
ntfirmed Bl

Gas limit:

onstructoer contlrmed

deployed at:

Limit:

Limit:

tor contirmed

tion sent:
price: gwel
kNonfungiblep

Limit:

nT Lrmesd Bl

Gas limit:

as limit
etRageluy LngP

gl Gas limit

osEngine. setRageBuy ingProtocol

0N Sent:
gwel Gas limit
a05Engine. setRageBuyingProto

on sent:

gwel Ga
ngine. setRaged

5 limit:
ury Lng P

onf Lrmed

onf irmed

Nonce:

L confirmed {

Monce:
contirmed |

MNon
cont Lrmed

MNon
ont Lrmed

est_set_buying_proto

Copyright © CTDSec - All rights reserved

24 | Page

set_automator RUNNING

Limit:
ontirmed Bl

Limit:
Tirmed

Limits

Gas limit:
tr i

T L rmed
Blo

ructor contirmed Blo

Gas limit:

ator conflirmed |

{ Limit: Monce:
tautomator confirmed |

g { Limit:
ngine. sethutomator contlirmed

tests/test rage chaos.py::test set automator

Copyright © CTDSec - All rights reserved 25 | Page

tion sent:

price: Jwel

kMonTungiblep
kNonfungibLepP

Limit:
T Lrmed BL

Gas Limit:
or confilrmed

Gas limit:
tionManager
t LonManage r

tion sent:
Gas pr

Mo-ckNonTungibl

Transaction sent:

RagelhaosEngLne
RageChaosEngine deployes

Limit:
contirmed

Limit:
gs contirmed

Limit:
5 contirmed

gwel { limit:
sEngine. setConfigs confirmed

Limit:
contirmed

Monce:

roont Lrmed

Nonce:

Nonce:

Copyright © CTDSec - All rights reserved

26 | Page

ypticn_nft. py xase_url RUNNING

Gas limit:
ont lrmed Bl

Limit:
Tirmed

Gas Liml
onManager I or confirmed Bloc

el

b tBeta. seth

Sent:
el Gas limit:
asel®mI contlrmed

tests/test_rage_optlon_nft.py::test_base uri

Copyright © CTDSec - All rights reserved 27 | Page

tion_nit. itest_mint RUNNING

Gas Limit:
ontirmed Block:

Limit:

Gas

Aage ntirmed

Rage deployed at:

Limit:
r cont Llrmed

pri gwe Gas Limit:
e0ptionNTtBeta r r contirmed
ptionNftBeta de

gwel Gas limit:
Ragedpt LonNftBeta.mint confirmed

Transaction sent:
Gas pric gwel Limit:
ptionNftBeta. mint nfirmed

pri gwel limit:
Ragedpt LonNftBeta.mint confirmed

Transaction sent:
Gas pri gwel limit: Nonce:
Ragedpt LonNftBeta.mint confirmed

gwel Limit:
onNftBeta. mint nfirmed B

itest_mint

Copyright © CTDSec - All rights reserved 28 | Page

Limit:
ntirmed Bl

Limit:
cont L rmed

Monce:

cont Lrmed Bl

kNonfungiblePositio

tion sent:
price: Jwel Gas limit:
MockMonfung bl iticnManager.mint confirmed Blo

sent:

Limit:
ngin i r contirmed
ngine

Gas limit:
stru r

5 pri gwel Limit:
a0pt LonNTtBeta. burn ntirmed

Limit:
cont Lrmed

Limit:
ontirmed

Limit:
on T Lrmed

tests/test_rage_optlon_nft. (test_burn

Copyright © CTDSec - All rights reserved

29 | Page

Limit:
ontT1rmed

limit:
ynManager.mint cont lrmed

Limit: Mo
r contirmed Block:

g Gas limit:
RagesSwapper. withdrawEth confirmed |

Limit:
ntirmesd Bl

Limit:
contirmed |

Limit:
contirmed |

Limit:
Blo

Transactlion sant:
Gas pr Qwel L Limit
< per. withdra = ntirmed B

tests/test_rage_swapper. (test_withdraw

Copyright © CTDSec - All rights reserved

30 | Page

5.0 Annexes

Testing code:

Buy proto:
from brownie import (

reverts,

from scripts.helpful scripts import (
ZERO_ADDRESS,
DAY_TIMESTAMP,

get_account,

from scripts.deploy import (

deploy weth,

deploy_usdc,

deploy usdc_weth_pool,

deploy_usdc_rage pool,

deploy uniswap v3 factory,

Copyright © CTDSec - All rights reserved 31 | Page

deploy position_manager,

deploy_rage,

deploy_ swapper,
deploy rage oracle,
deploy rage buying proto,
deploy rage nft,

deploy chaos_engine,

test withdraw(only local):

get account(9)
other = get account(1)
extra = get_account(2)
owner2 = get_account(8)

owner3 = get_account(9)

deploy weth(owner)
deploy usdc(owner)

deploy_rage(owner)

Copyright © CTDSec - All rights reserved

pool = deploy usdc_weth_pool(usdc.address, weth.address, owner)
pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

factory = deploy uniswap_v3 factory(owner)

position_manager = deploy_position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)
oracle = deploy rage oracle(owner, rage.address, pool rage.address)
nft = deploy rage nft(owner, chaos_engine.address)

buy proto = deploy rage buying proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

with reverts("unauthorized"):

buy proto.withdrawEth({"from": other})

buy_proto.withdrawEth({"from": "@xCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020"})

with reverts("unauthorized"):

buy proto.withdrawToken(usdc.address, 1e18, {"from": other})

Copyright © CTDSec - All rights reserved

with reverts("invAmo"):

buy_proto.withdrawToken(usdc.address, 0, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

with reverts("insBal"):

buy proto.withdrawToken(usdc.address, 1e18, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

usdc.mint(buy proto.address, 1e18)

tx = buy proto.withdrawToken(usdc.address, 1el8, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

assert tx.events['Transfer'][@]['from'] == buy_proto.address

assert tx.events['Transfer']J[0]['to'] ==
"Ox815E7DE6BF3Fa334581De2b398BdDEBF3B71AE99"

assert tx.events['Transfer'][0]['value'] == 1el8

test_set_status(only local):

get_account(9)

other = get account(1)

extra = get_account(2)
owner2 = get account(8)

owner3 = get_account(9)

deploy weth(owner)

Copyright © CTDSec - All rights reserved

usdc = deploy_usdc(owner)

rage = deploy_rage(owner)

pool deploy usdc_weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc rage pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 _000, -600, 600, 1lel8)

chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position manager.address, factory.address, pool.address)

swapper = deploy swapper(rage.address, pool rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)
oracle = deploy rage oracle(owner, rage.address, pool rage.address)
nft = deploy rage nft(owner, chaos_engine.address)

buy proto = deploy rage buying proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

with reverts("unauthorized"):

buy proto.setStatus(@, {"from": other})

with reverts("invalidStatus"):

buy proto.setStatus(2, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

Copyright © CTDSec - All rights reserved

buy proto.setStatus(1, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

rom brownie import (

reverts,

rom scripts.helpful _scripts import (

get_account,

rom scripts.deploy import (

deploy rage,

test mint(only Llocal):

get account(o)

get_account(1)

rage = deploy rage(owner)

Copyright © CTDSec - All rights reserved

with reverts("unauthorized"):

rage.mint(other, 10e18, {"from": other})

assert rage.balanceOf(other) == ©

rage.mint(other, 10e18, {"from": owner})

assert rage.balanceOf(other) == 10el8

test_burn(only Llocal):

= get_account(9)

get account(1)

rage = deploy rage(owner)

rage.mint(other, 10e18, {"from": owner})

assert rage.balanceOf(other) == 10el8

rage.burn(1e18, {"from": other})

assert rage.balanceOf(other) == 9el8

test transfer ownership(only Llocal):

Copyright © CTDSec - All rights reserved

get_account(0)

get_account(1)

rage = deploy rage(owner)

with reverts("unauthorized"):

rage. transferOwnership(other, {"from": other})

assert rage.owner() == owner

rage. transferOwnership(other, {"from":
"OxC2bBE86b900cO72a4031247547c337aFf344AD90" })

assert rage.owner() == other

Rage Chaos:

from brownie import (

reverts,

from scripts.helpful scripts import (

ZERO_ADDRESS,

DAY_TIMESTAMP,

get_account,

Copyright © CTDSec - All rights reserved

from scripts.deploy import (

deploy_weth,

deploy usdc,

deploy usdc_weth_pool,

deploy usdc_rage pool,

deploy uniswap_v3_ factory,

deploy position_manager,

deploy_rage,

deploy swapper,

deploy rage oracle,

deploy rage buying proto,

deploy rage nft,

deploy chaos_engine,

test_initialize(only local):

get account(9)

other = get _account(1)

owner2 = get_account(8)

Copyright © CTDSec - All rights reserved

owner3 = get_account(9)

weth = deploy weth(owner)

usdc deploy usdc(owner)

rage deploy rage(owner)

pool = deploy usdc weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc_rage pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_ factory(owner)

position_manager = deploy_position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1el8)

chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

swapper = deploy swapper(rage.address, pool rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

oracle = deploy rage oracle(owner, rage.address, pool rage.address)
nft = deploy_rage_nft(owner, chaos_engine.address)

buy proto = deploy rage buying proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved

chaos_engine.initialize(swapper.address, buy proto.address, {"from":
other})

chaos_engine.initialize(swapper.address, buy proto.address, {"from": owner2})

with reverts("alreadyInitialized"):

chaos_engine.initialize(swapper.address, buy proto.address, {"from":

owner2})

test_withdraw(only local):

get_account(9)
other = get _account(1)
owner2 = get account(8)

owner3 = get_account(9)

weth = deploy weth(owner)

usdc = deploy_usdc(owner)

rage = deploy_rage(owner)

pool deploy_usdc_weth_pool(usdc.address, weth.address, owner)
pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_factory(owner)

Copyright © CTDSec - All rights reserved

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10_000, -600, 600, 1lel8)

chaos_engine = deploy chaos engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)
with reverts("unauthorized"):
chaos_engine.withdrawEth({"from": other})

chaos_engine.withdrawEth({"from":
"@xCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

with reverts("unauthorized"):
chaos_engine.withdrawToken(usdc.address, {"from": other})
with reverts("noTokenBalance"):

chaos_engine.withdrawToken(usdc.address, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

usdc.mint(chaos_engine.address, 1e18)

chaos_engine.withdrawToken(usdc.address, {"from":

"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020"})
assert tx.events['Transfer'][@]['from'] == chaos_engine.address

assert tx.events['Transfer'][0]['to'] ==
"@x507fbdE39ba40DA4Fc79426AD5E3C64944fE43d4"

assert tx.events['Transfer'][0]['value'] == 1el8

def test _transfer_ownership(only local):

Copyright © CTDSec - All rights reserved

get_account(9)
other = get _account(1)
extra = get account(2)
owner2 = get account(8)

owner3 = get_account(9)

weth = deploy_weth(owner)

usdc = deploy_usdc(owner)

rage deploy_rage(owner)

pool deploy usdc_weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc rage pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position manager.address, factory.address, pool.address)

swapper = deploy swapper(rage.address, pool rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

Copyright © CTDSec - All rights reserved

oracle = deploy rage oracle(owner, rage.address, pool rage.address)

nft = deploy_rage_nft(owner, chaos_engine.address)

buy_proto = deploy_rage buying proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

with reverts("unauthorized"):
chaos_engine.transferOwnership(extra, {"from": other})
with reverts("invalidOwnerAddress"):

chaos_engine.transferOwnership(ZERO_ADDRESS, {"from": owner2})

chaos_engine.initialize(swapper.address, buy proto.address, {"from": owner2})

with reverts("ownerCannotBeRbp"):
chaos_engine.transferOwnership(buy proto.address, {"from": owner2})

with reverts("ownerCannotBeAutomator"):

chaos_engine.transferOwnership("0xCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020",

{"from": owner2})
with reverts("ownersMustBeDifferent"):
chaos_engine.transferOwnership(owner3, {"from":
with reverts("ownersMustBeDifferent"):
chaos_engine.transferOwnership(owner2, {"from": owner3})

chaos_engine.transferOwnership(other, {"from": owner2})

Copyright © CTDSec - All rights reserved

assert tx.events['OwnershipTransferred'][@]['oldOwner'] == owner2

assert tx.events['OwnershipTransferred'][0]['newOwner'] == other

test_set_buying proto(only local):

get account(9)
other = get account(1)
extra = get_account(2)
owner2 = get_account(8)

owner3 = get_account(9)

weth = deploy weth(owner)

usdc deploy usdc(owner)

rage = deploy rage(owner)

pool = deploy usdc_weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc_rage pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

Copyright © CTDSec - All rights reserved

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)
oracle = deploy rage oracle(owner, rage.address, pool rage.address)
nft = deploy rage nft(owner, chaos_engine.address)

buy proto = deploy rage buying proto(owner, chaos_engine.address,

rage.address, oracle.address, swapper.address, nft.address)

with reverts("unauthorized"):
chaos_engine.setRageBuyingProtocol(buy_proto.address, {"from": other})
with reverts("invalidRbpAddress"):
chaos_engine.setRageBuyingProtocol (ZERO_ADDRESS, {"from": owner2})
with reverts("ownerCannotBeRbp"):
chaos_engine.setRageBuyingProtocol(owner3, {"from": owner2})
tx = chaos_engine.setRageBuyingProtocol(buy proto.address, {"from": owner2})
assert tx.events['RageBuyingProtocolProposed'][@]['proposer'] == owner2

assert tx.events['RageBuyingProtocolProposed'][@]['pendingRbp'] ==

buy proto.address

def test set automator(only local):

owner = get account(®@)

Copyright © CTDSec - All rights reserved

other = get_account(1)
extra = get_account(2)
owner2 = get_account(8)

owner3 = get_account(9)

weth = deploy weth(owner)

usdc = deploy usdc(owner)

rage = deploy_rage(owner)

pool = deploy usdc_weth _pool(usdc.address, weth.address, owner)
pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

factory = deploy uniswap_v3 factory(owner)

position_manager = deploy_position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)
with reverts("unauthorized"):
chaos_engine.setAutomator(other, {"from": other})
with reverts("invalidAutomatorAddress"):

chaos_engine.setAutomator(owner2, {"from": owner2})

Copyright © CTDSec - All rights reserved

chaos_engine.setAutomator(other, {"from": owner2})

assert tx.events['AutomatorSet'][@][' 'automator'] == other

test_set_configs(only local):

get account(9)
other = get account(1)
extra = get_account(2)
owner2 = get_account(8)

owner3 = get_account(9)

weth = deploy weth(owner)

usdc deploy usdc(owner)

rage = deploy rage(owner)

pool = deploy usdc_weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc_rage pool(usdc.address, rage.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

Copyright © CTDSec - All rights reserved

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

with reverts("unauthorized"):

chaos_engine.setConfigs(True, @, DAY TIMESTAMP, 1000, {"from": other})

with reverts("invalidRageCrushMode"):

chaos_engine.setConfigs(True, 3, DAY _TIMESTAMP, 1000, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

with reverts("invalidRageInterval™):

chaos_engine.setConfigs(True, 0, 0, 1000, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

with reverts("invalidLiquiditySlippage"):

chaos_engine.setConfigs(True, @, DAY TIMESTAMP, 3000, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

tx = chaos_engine.setConfigs(True, @, DAY_TIMESTAMP, 2500, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

assert tx.events['ConfigChanged'][@]['crushPublic'] == True

assert tx.events['ConfigChanged'][@]['crushMode'] == ©

assert tx.events['ConfigChanged'][@]['crushInterval'] == DAY_TIMESTAMP

assert tx.events['ConfigChanged'][0@][" 'slippage'] == 2500

Rage Option NFT:

from brownie import (

reverts,

Copyright © CTDSec - All rights reserved

from scripts.helpful scripts import (

ZERO_ADDRESS,

get_account,

from scripts.deploy import (

deploy_weth,

deploy_usdc,

deploy usdc_weth_pool,

deploy uniswap v3 factory,

deploy position_manager,

deploy_rage,

deploy chaos_engine,

deploy_rage nft,

test base uri(only local):

owner = get account(9)

Copyright © CTDSec - All rights reserved

other = get_account(1)
owner2 = get_account(8)

owner3 = get_account(9)

weth = deploy weth(owner)
usdc = deploy usdc(owner)
rage = deploy_ rage(owner)
pool = deploy usdc_weth pool(usdc.address, weth.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

with reverts("invalidRceAddress"):

deploy_rage_nft(owner, ZERO_ADDRESS)

rage_nft = deploy rage nft(owner, chaos engine.address)

with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved

rage_nft.setBaseURI("some url", {"from": other})

tx = rage_nft.setBaseURI("some url”, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

assert tx.events['BaseUriUpdated'][@]['newBaseURI'] == "some_ url"

test_mint(only_local):

get_account(9)
other = get account(1)
extra = get_account(2)
owner2 = get account(8)

owner3 = get_account(9)

weth = deploy weth(owner)

usdc = deploy_usdc(owner)
rage = deploy_rage(owner)
pool deploy_usdc_weth_pool(usdc.address, weth.address, owner)

factory = deploy uniswap_v3 factory(owner)

position_manager = deploy_position_manager (owner)

Copyright © CTDSec - All rights reserved

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position manager.address, factory.address, pool.address)

rage_nft = deploy rage nft(owner, chaos engine.address)

with reverts("unauthorized"):

rage_nft.mint(other, 1, {"from": other})
with reverts("invalidRecipient"):

rage nft.mint(ZERO_ADDRESS, 1, {"from": ZERO_ADDRESS})
tx = rage_nft.mint(other, 1, {"from": ZERO_ADDRESS})
assert tx.events['Transfer'][@]['from'] == ZERO_ADDRESS
assert tx.events['Transfer'][@]['to"'] == other

assert tx.events['Transfer'][0]['tokenId'] == 1

with reverts("ERC721: token already minted"):
rage_nft.mint(extra, 1, {"from": ZERO_ADDRESS})
rage nft.mint(extra, 2, {"from": ZERO_ADDRESS})
assert tx.events['Transfer'][@]['from'] == ZERO_ADDRESS
assert tx.events['Transfer'][0]['to'] == extra

assert tx.events['Transfer'][0]['tokenId']

Copyright © CTDSec - All rights reserved

test_burn(only local):

get_account(9)
other = get account(1)
extra = get account(2)
owner2 = get account(8)

owner3 = get account(9)

weth = deploy_weth(owner)
usdc = deploy_usdc(owner)
rage = deploy_rage(owner)
pool deploy usdc_weth pool(usdc.address, weth.address, owner)

factory = deploy_uniswap_v3_factory(owner)

position_manager = deploy position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy_chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position manager.address, factory.address, pool.address)

rage_nft = deploy rage nft(owner, chaos engine.address)

with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved

rage_nft.burn(l, {"from": other})
with reverts("tokenNotFound"):

rage_nft.burn(2, {"from": ZERO_ADDRESS})
rage_nft.mint(other, 1, {"from": ZERO_ADDRESS})

rage_nft.burn(l, {"from": ZERO_ADDRESS})
assert tx.events['Transfer'][O]['from'] == other

assert tx.events['Transfer'][@]['to’'] == ZERO_ADDRESS

assert tx.events['Transfer'][0]['tokenId'] == 1

Rage Swapper:

from brownie import (

reverts,

from scripts.helpful_scripts import (

ZERO_ADDRESS,

DAY_TIMESTAMP,

get_account,

get timestamp,

get _chain_number,

increase_timestamp

Copyright © CTDSec - All rights reserved

from scripts.deploy import (
deploy weth,

deploy usdc,

deploy usdc_weth_pool,
deploy usdc_rage pool,
deploy_uniswap_v3_ factory,

deploy position_manager,

deploy_rage,

deploy chaos_engine,

deploy_ swapper,

test_withdraw(only local):

get_account(9)

other = get _account(1)

extra = get_account(2)

owner2 = get account(8)

owner3 = get_account(9)

Copyright © CTDSec - All rights reserved

weth = deploy weth(owner)

usdc = deploy usdc(owner)

rage deploy rage(owner)

pool deploy usdc_weth pool(usdc.address, weth.address, owner)

pool rage = deploy usdc_rage pool(usdc.address, rage.address, owner)

factory = deploy uniswap_v3 factory(owner)

position_manager = deploy_position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1el8)

chaos_engine = deploy chaos engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

swapper = deploy swapper(rage.address, pool rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

with reverts("unauthorized"):

swapper.withdrawEth({"from": other})

swapper.withdrawEth({"from": "@xCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020"})

with reverts("unauthorized"):

Copyright © CTDSec - All rights reserved

swapper.withdrawToken(usdc.address, {"from": other})
with reverts("noTokenBalance"):

swapper.withdrawToken(usdc.address, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

usdc.mint(swapper.address, 1el8)

tx = swapper.withdrawToken(usdc.address, {"from":
"OxCBe5a4103d4C7Ed5D73d9942101473C1BcOA8020" })

assert tx.events['Transfer'][@]['from'] == swapper.address

assert tx.events['Transfer'][0]['to'] ==
"0x507fbdE39bad0@DA4Fc79426AD5E3C64944FE43d4"

assert tx.events['Transfer'][0]['value'] == 1el8

test swap(only local):

get account(9)
other = get_account(1)
extra = get_account(2)
owner2 = get_account(8)

owner3 = get_account(9)

deploy weth(owner)

deploy usdc(owner)

deploy rage(owner)

Copyright © CTDSec - All rights reserved

pool = deploy usdc_weth_pool(usdc.address, weth.address, owner)
pool_rage = deploy_usdc_rage_pool(usdc.address, rage.address, owner)

factory = deploy uniswap_v3 factory(owner)

position_manager = deploy_position_manager (owner)

position_manager.mint(usdc.address, rage.address, 10 000, -600, 600, 1lel8)

chaos_engine = deploy chaos_engine(owner, rage.address, 1, owner2, owner3,

usdc.address, position_manager.address, factory.address, pool.address)

swapper = deploy_swapper(rage.address, pool_rage.address,

chaos_engine.address, usdc.address, weth.address, pool.address, owner)

with reverts("noEthSent"):

swapper.swapEthForUsdc({"from": other})

usdc.mint(swapper.address, 1000e9)
weth.approve(pool.address, 10el8, {"from": swapper.address})
tx = swapper.swapEthForUsdc({"from": other, "value": 1el8})
assert tx.events['Deposit'][@]['dst'] == swapper.address

assert tx.events['Deposit'][0]['wad'] == 1el8

Copyright © CTDSec - All rights reserved

tx = swapper.swapEthForUsdc({"from": extra, "value": ©.5el8})

assert tx.events['Deposit'][@]['dst'] == swapper.address

assert tx.events['Deposit'][@]['wad’'] == 0.5el18

Copyright © CTDSec - All rights reserved 60 | Page

6.0 Summary of the audit [PASS =]

Several high-medium severity gaps can disrupt user experience or disable features. With the

recommended mitigations, the contract can achieve a robust security posture fit for production DeFi
deployment. The audit result is failed until further review by the development team.

UPDATE: Following the development team's review, all critical vulnerabilities have been
mitigated/reviewed, and the audit result is satisfactory.

Vulnerability Level | Total Pending Not Acknowledged Resolved
Apply
3 1 2
High
7 1 6
Medium
5 2 3
Low
Informational 0
Copyright © CTDSec - All rights reserved 61 | Page

	1.0 Introduction
	1.1 Project engagement
	1.2 Disclaimer

	
	2.0 Coverage
	2.1 Target Code and Revision
	2.2 Attacks made to the contract

	3.0 Security Issues
	3.1 High severity issues [3]
	
	3.2 Medium severity issues [7]
	3.3 Low severity issues [5]
	
	3.4 Informational Findings [0]

	4.0 Testing coverage - python
	5.0 Annexes
	
	
	6.0 Summary of the audit [PASS ✅]

