

Smart contract
security audit

Hestia - PASS

Table of Contents

1.0 Introduction​ 3
1.1 Project engagement​ 3
1.2 Disclaimer​ 3

2.0 Coverage​ 4
2.1 Target Code and Revision​ 4
2.2 Attacks made to the contract​ 5

3.0 Security Issues​ 7
3.1 High severity issues [1 - Fixed]​ 7
3.2 Medium severity issues [0]​ 8
3.3 Low severity issues [2 - Fixed]​ 8
3.4 Informational Findings [1]​ 9

4.0 Testing coverage​ 10
5.0 Annexes​ 11
6.0 Summary of the audit​ 12

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 2 | Page

1.0 Introduction

1.1 Project engagement

During January of 2025, Hestia team engaged CTDSec to audit smart contracts that they created. The

engagement was technical in nature and focused on identifying security flaws in the design and

implementation of the contracts. Hestia provided CTDSec with access to their code repository and

whitepaper.

1.2 Disclaimer

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the network’s fast-paced and

rapidly changing environment, we at CTDSec recommend that Hestia team put in place a

bug bounty program to encourage further and active analysis of the smart contract.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 3 | Page

2.0 Coverage

2.1 Target Code and Revision

For this audit, we performed research, investigation, and review of the Hestia contracts followed by

issue reporting, along with mitigation and remediation instructions outlined in this report. The

following code files are considered in-scope for the review:

Source file:

https://basescan.org/address/0x167d84bd3875042aa00e2a187f4fed9a017cd099#code

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 4 | Page

https://basescan.org/address/0x167d84bd3875042aa00e2a187f4fed9a017cd099#code

2.2 Attacks made to the contract

In order to check for the security of the contract, we tested several attacks in order to make sure

that the contract is secure and follows best practices.

№ Issue description.

1 Compiler warnings.

2 Race conditions and Reentrancy. Cross-function race conditions.

3 Possible delays in data delivery.

4 Oracle calls.

5 Front running.

6 Timestamp dependence.

7 Integer Overflow and Underflow.

8 DoS with Revert.

9 DoS with block gas limit.

10 Methods execution permissions.

11 Economy model. If application logic is based on an incorrect economic model,
the application would not function correctly and participants would incur
financial losses. This type of issue is most often found in bonus rewards
systems, Staking and Farming contracts, Vault and Vesting contracts, etc.

12 The impact of the exchange rate on the logic.

13 Private user data leaks.

14 Malicious Event log.

15 Scoping and Declarations.

16 Uninitialized storage pointers.

17 Arithmetic accuracy.

18 Design Logic.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 5 | Page

19 Cross-function race conditions.

20 Safe Zeppelin module.

21 Fallback function security.

22 Overpowered functions / Owner privileges

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 6 | Page

3.0 Security Issues

3.1 High severity issues [1 - Fixed]

1. Unbounded Slippage in Swaps

Contract: YorpyController.sol

Function: swap(address tokenIn, address tokenOut, uint256 amount)

Issue: The direct swap functionality, executed via swap(address tokenIn, address tokenOut, uint256

amount), leverages the following code:

uint160 sqrt = zeroForOne ? MIN_SQRT_RATIO + 1 : MAX_SQRT_RATIO - 1;​
POOL.swap(​
 address(this), ​
 zeroForOne, ​
 int256(amount), ​
 sqrt, ​
 ...​
);

This setup grants the contract the ability to accept any execution price provided by the pool. In scenarios

where there is low liquidity, the presence of malicious liquidity providers, or if a miner performs a

front-running attack to manipulate the price, the contract becomes vulnerable. Specifically, it could

result in the contract being forced to execute a swap of USDC (or YORPY) at a significantly unfavorable

price, draining large portions of the controller’s funds in a single transaction.

Furthermore, because these swaps can be triggered automatically via functions such as smokeFees() or

causeChaos(), an attacker can strategically wait for a large swap to be initiated, then manipulate the pool

price by executing a sandwich attack. This is particularly concerning when SMOKE_PUBLIC is set to true,

as it allows any user to call the smokeFees() function, thus enabling a broader attack surface for potential

exploitation.

Recommendation: Implement slippage protections in all swap paths (including the repeated “chaos”

swaps). The simplest approach is to incorporate a minOutput parameter or an acceptable price range.

Fixed version: https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 7 | Page

https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code

3.2 Medium severity issues [0]

No medium findings were found.

3.3 Low severity issues [2 - Fixed]

1. Missing Verification That the NFT Matches the Intended Pool

Contract: YorpyController.sol

Issue: The contract never verifies that the NFT_ID passed to setNft() actually corresponds to the

USDC/YORPY pool at POOL_FEE. A malicious or erroneous NFT_ID could belong to a different pair, or an

empty position, causing swaps or liquidity operations to malfunction or revert.

Recommendation: upon setNft query the Position Manager (positions(NFT_ID)) to ensure token0 ==

address(USDC) && token1 == address(YORPY) (or vice versa) and fee == POOL_FEE

Fixed version: https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code

2. Absolute Limits for Chaos and Feed

Contract: YorpyController.sol

Issue: SMOKE_CHAOS_RATIO is an absolute USDC cap and the code picks chaosBalance from

getUsdcChaosBalance() each iteration might do a different “bounded” swap so of the iteration results in

zero YORPY gain (due to partial slippage or price movement).

Recommendation: Emit an event when the loop ends early

Fixed version: https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 8 | Page

https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code
https://basescan.org/address/0x3B47651C477751eF2d46cBC890f7f91Ea441749E#code

3.4 Informational Findings [1]

1. Optimize Storage Access

Contract: YorpyController.sol

Repeated calls to getUsdcTotalBalance() or YORPY.balanceOf(address(this)) within a single function can

be cached in local variables to reduce minor gas overhead.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 9 | Page

4.0 Testing coverage

During the testing phase, custom use cases were written to cover all the logic of contracts

*Check “5 Annexes” to see the testing code.

Hestia contracts tests

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 10 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 11 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 12 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 13 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 14 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 15 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 16 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 17 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 18 | Page

 Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 19 | Page

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 20 | Page

5.0 Annexes

Testing code - Token Hestia:

from brownie import (

 reverts,

)

from scripts.helpful_scripts import (

 ZERO_ADDRESS,

 DAY_TIMESTAMP,

 get_account,

 get_timestamp,

 get_chain_number,

 increase_timestamp

)

from scripts.deploy import (

 deploy_uniswap_v3_liquidity,

 deploy_usdc,

 deploy_weth,

 deploy_yorpy_controller,

)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 21 | Page

def test_set_nft(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 with reverts("UNAUTHORIZED"):

 yorpy_ctrl.setNft(0, {"from": other})

 with reverts("invalidNftId"):

 yorpy_ctrl.setNft(0, {"from": owner})

 with reverts("invalidPoolAddress"):

 yorpy_ctrl.setNft(1, {"from": owner})

 yorpy = "0x3b86220b318447A13d02cacd6301a3f7AD2D89C6"

 factory.createPool(usdc.address, yorpy, 10000)

 tx = yorpy_ctrl.setNft(1, {"from": owner})

 assert tx.events['SetNft'][0]['nftId'] == 1

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 22 | Page

def test_lock_nft(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 with reverts("UNAUTHORIZED"):

 yorpy_ctrl.lockNFT({"from": other})

 with reverts("nftNotSet"):

 yorpy_ctrl.lockNFT({"from": owner})

 yorpy = "0x500FA5Fd82f3e7A01f624457Ac35EE496Cb3C8a9"

 factory.createPool(usdc.address, yorpy, 10000)

 yorpy_ctrl.setNft(1, {"from": owner})

 with reverts("ERC721: invalid token ID"):

 yorpy_ctrl.lockNFT({"from": owner})

def test_set_usdc_weth_pool(only_local):

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 23 | Page

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 with reverts("UNAUTHORIZED"):

 yorpy_ctrl.setUsdcWethPool(ZERO_ADDRESS, {"from": other})

 with reverts("invalidPoolAddress"):

 yorpy_ctrl.setUsdcWethPool(ZERO_ADDRESS, {"from": owner})

 new_usdc = deploy_usdc(owner)

 new_weth = deploy_weth(owner)

 tx = factory.createPool(new_usdc.address, new_weth.address, 500)

 pool_addr = tx.events['PoolCreated'][0]['pool']

 with reverts("invalidPoolTokens"):

 yorpy_ctrl.setUsdcWethPool(pool_addr, {"from": owner})

 pool = factory.getPool(usdc.address, weth.address, 500)

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 24 | Page

 tx = yorpy_ctrl.setUsdcWethPool(pool, {"from": owner})

 assert tx.events['SetUsdcWethPool'][0]['pool'] == pool

def test_set_automator(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 automator = "0xcf4f8a1150fDc8B9b8d4827411f966f59Dc64102"

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 with reverts("unauthorized"):

 yorpy_ctrl.setAutomator(ZERO_ADDRESS, {"from": other})

 with reverts("invalidAutomatorAddress"):

 yorpy_ctrl.setAutomator(ZERO_ADDRESS, {"from": automator})

 tx = yorpy_ctrl.setAutomator(extra, {"from": automator})

 assert tx.events['SetAutomator'][0]['automator'] == extra

def test_set_configs(only_local):

 # Arrange

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 25 | Page

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 automator = "0xcf4f8a1150fDc8B9b8d4827411f966f59Dc64102"

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 with reverts("unauthorized"):

 yorpy_ctrl.setConfigs(

 6000e6, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 yorpy_ctrl.setAutomator(extra, {"from": automator})

 with reverts("invalidUsdcCapacity"):

 yorpy_ctrl.setConfigs(

 20000e6, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidLiquiditySlippage"):

 yorpy_ctrl.setConfigs(

 10000, 25, True, 3600,

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 26 | Page

 1, 3, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeInterval"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 0,

 1, 3, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeChaosRatio"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 110, 3, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeChaosLoop"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 6, 0, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeFeed"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 3, 200, 0, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeUsdcTarget"):

 yorpy_ctrl.setConfigs(

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 27 | Page

 10000, 0, True, 3600,

 1, 3, 0, 4, 0, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidSmokeYorpyTarget"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 3, 0, 0, 5, True, 3600 * 24, 3, 250,

 {"from": extra})

 with reverts("invalidRageInterval"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600, 3, 250,

 {"from": extra})

 with reverts("invalidRageFeed"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600 * 12, 200, 250,

 {"from": extra})

 with reverts("invalidRageLiquidityRatio"):

 yorpy_ctrl.setConfigs(

 10000, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600 * 12, 0, 15000,

 {"from": extra})

 tx = yorpy_ctrl.setConfigs(

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 28 | Page

 10000, 0, True, 3600,

 1, 3, 0, 0, 0, True, 3600 * 12, 0, 0,

 {"from": extra})

 assert tx.events['ConfigChanged'][0]['usdcCapacity'] == 10000

 assert tx.events['ConfigChanged'][0]['liquiditySlippage'] == 0

def test_smoke_fees(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 automator = "0xcf4f8a1150fDc8B9b8d4827411f966f59Dc64102"

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 # Set a new automator

 yorpy_ctrl.setAutomator(extra, {"from": automator})

 # Set smoke public to false

 yorpy_ctrl.setConfigs(

 10000, 0, False, 3600,

 1, 3, 0, 0, 0, True, 3600 * 12, 0, 0,

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 29 | Page

 {"from": extra})

 with reverts("unauthorized"):

 yorpy_ctrl.smokeFees({"from": other})

 with reverts("UNAUTHORIZED"):

 yorpy_ctrl.setDefaultMode({"from": other})

 # set smoke public to true

 yorpy_ctrl.setDefaultMode({"from": owner})

 with reverts("nftNotSet"):

 yorpy_ctrl.smokeFees({"from": other})

 # set the nft

 yorpy = "0x58B46E930C11294E8e93b491e2F39a781172E37A"

 factory.createPool(usdc.address, yorpy, 10000)

 yorpy_ctrl.setNft(1, {"from": owner})

 with reverts("ERC721: invalid token ID"):

 yorpy_ctrl.smokeFees({"from": other})

 position_manager = yorpy_ctrl.POSITION_MANAGER()

 uniswap_liq = deploy_uniswap_v3_liquidity(owner, weth.address, usdc.address,

position_manager)

 usdc.deposit({"from": owner, "value": 10e18})

 weth.deposit({"from": owner, "value": 10e18})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 30 | Page

 usdc.approve(uniswap_liq.address, 100e18, {"from": owner})

 weth.approve(uniswap_liq.address, 100e18, {"from": owner})

def test_yorpy_rage(only_local):

 # Arrange

 owner = get_account(0)

 other = get_account(1)

 extra = get_account(2)

 automator = "0xcf4f8a1150fDc8B9b8d4827411f966f59Dc64102"

 usdc = deploy_usdc(owner)

 weth = deploy_weth(owner)

 yorpy_ctrl, factory = deploy_yorpy_controller(owner, weth.address,

usdc.address)

 # Set a new automator

 yorpy_ctrl.setAutomator(extra, {"from": automator})

 # Set smoke public to false

 yorpy_ctrl.setConfigs(

 10000, 0, False, 3600,

 1, 3, 0, 0, 0, True, 3600 * 12, 0, 0,

 {"from": extra})

 with reverts("unauthorized"):

 yorpy_ctrl.smokeFees({"from": other})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 31 | Page

 with reverts("UNAUTHORIZED"):

 yorpy_ctrl.setDefaultMode({"from": other})

 # set smoke public to true

 yorpy_ctrl.setDefaultMode({"from": owner})

 with reverts("nftNotSet"):

 yorpy_ctrl.yorpyRage({"from": other})

 # set the nft

 yorpy = "0xCdA4219336Af610251f1Ff3fEC9F83954BCA7A57"

 factory.createPool(usdc.address, yorpy, 10000)

 yorpy_ctrl.setNft(1, {"from": owner})

 with reverts("Invalid token ID"):

 yorpy_ctrl.yorpyRage({"from": other})

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 32 | Page

6.0 Summary of the audit

During the audit, one high vulnerability and two medium vulnerabilities were identified and addressed in

the specified commits.

Copyright © CTDSec - All rights reserved​ ​ ​ ​ ​ ​ 33 | Page

Vulnerability Level Total Pending Not
Apply

Acknowledged Resolved

 High
1 1

 Medium

2 2

 Low
0

 Informational

 1

 1

	1.0 Introduction
	1.1 Project engagement
	1.2 Disclaimer

	
	2.0 Coverage
	2.1 Target Code and Revision
	2.2 Attacks made to the contract

	3.0 Security Issues
	3.1 High severity issues [1 - Fixed]
	3.2 Medium severity issues [0]
	3.3 Low severity issues [2 - Fixed]
	
	3.4 Informational Findings [1]

	4.0 Testing coverage
	
	
	5.0 Annexes
	
	6.0 Summary of the audit

